Credit Limit Optimization (CLO) for Credit Cards

Vijay S. Desai
CSCC IX, Edinburgh
September 8, 2005
Agenda

- Background
 - Traditional approaches to credit limit management
 - History of different products/approaches
- Characteristics of the ideal solution
- Approaches to problem formulation
- Building good action-effect models
- Optimization problem
- Challenges in deploying the solution
- Optimization in other areas of credit card industry
- Q and A
Historical Credit Limit Change Programs

- Implemented in the form of decision trees/strategies
- Champion/Challenger framework for improving strategies over time
 - Randomly assign accounts to champion or challenger strategy
 - Measure performance over time
- Takes a six to twelve months to evaluate each challenger strategy
- A very small number of potential champion strategies can be tested at a given time
- Difficult to analyze why a particular challenger strategy worked
Efforts to Improve Credit Line Decisions

- By internal modeling groups of large banks
 - Optimization (e.g., JP Morgan Chase)
 - Markov decision processes (e.g., Bank One)
- By vendors
 - Greedy algorithms
 - Analytics heavy approaches
 - Optimization heavy approaches
 - Deterministic optimization
 - Robust optimization
Characteristics of Ideal CLO Solution

- Identify an optimal solution without lengthy champion/challenger iterations
- Achieve the full potential of each and every account relationship, not some segment level abstraction
- Optimize specific campaign goals such as profit or revenue or balance
- Accommodate operational as well as business constraints
- Factor in uncertainty in estimates and environment
- Examine multiple scenarios before committing to a final course of action
- Easy to deploy solutions
- Experimental design to explore new areas
Components of CLO Solution

- Data
- Action-Effect models
- Optimization
- Deployment
- Evaluation
Data Requirements for CLO

- Actions related data
 - Data from past campaigns
 - Results from systematically designed experiments

- Behavior related data
 - Statement data
 - Authorizations
 - Payments
 - Call-center data

- Organizational data
 - Business constraints data
 - Operations constraints data

- External data
 - Bureau data
 - Marketing data
Expanding Beyond the “Comfort Zone”

<table>
<thead>
<tr>
<th>Risk Score</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Limit Utilization</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Delinquency Status</td>
<td>Clean</td>
<td>Dirty</td>
<td>Clean</td>
</tr>
<tr>
<td>Champion Credit Line Inc.</td>
<td>0</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>Test Group 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test Group 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test Group 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test Group 4</td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>Test Group 5</td>
<td>500</td>
<td>1500</td>
<td>1000</td>
</tr>
<tr>
<td>Test Group 6</td>
<td>500</td>
<td>2000</td>
<td>1500</td>
</tr>
</tbody>
</table>

- Use Design of Experiments concepts
 - Generate the most amount of information at lowest cost
- Necessary to explore regions never tested before
 - e.g., increases for accounts with risky scores, higher increases for low risk accounts
- Necessary to build better action-effect models
- Help respond to competitive pressures or more aggressive business goals
Randomized Block Design Details

- **Response variable:** Change in balance over a 6 month period.
 - Could be credit risk, attrition risk, revenue

- **Treatment levels** (500, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000)
 - More levels allows one to explore a wider space

- **Blocks** (RL, RMCLDS, RMCLDD, RMCHDC, RMCHDD, RHCLDC, RHCLDD, RHCHDC, RHCHDD)
 - Blocking helps group similar accounts together reducing variation
 - Treatments within blocks randomly assigned
 - Blocking allows block versus treatment interaction

- Incomplete blocks, i.e., not all treatments repeated in all blocks due to business reasons

- Unbalanced design, i.e., each treatment does not appear the same number of times in each block
Action-Effect Models for CLO

- Use influence diagrams to visualize problem
- Predict effect of change in credit line on credit risk, attrition risk, revenue, and profit
- Segmentation choice crucial
 - Use the same segments as credit risk models
 - Use same segments as credit strategy
 - Using different segmentation in later stages could be problematic
- Accuracy of action-effect models determine the validity of optimization results
Data for Action-Effect Models

- Response is non-linear
- Low risk segments close to saturation point
- High risk segments show better response to increases
- Similar curves for credit risk and attrition risk
Enhancing Data for Action-Effect Models

- Traditional clustering: each data point assigned to a single class
 - Manual: segmentation, e.g. age
 - Data-driven: k-means
- Soft clustering: each data point belongs to all clusters in graded degree
 - Cluster membership determined by distance from center.
 - Data-driven: Cluster centers and shape updated intelligently
- Soft-clustering allows same account to be used in multiple action-effect models
Cluster Scoring

- **Action-effect models:**
 - Build models for change in credit risk, attrition risk, transaction volume and revolving balance, given a credit limit increase using account level information
 - Separate set of models for each segment or group of segments
 - Likely to be nonlinear models

- **Scoring:**
 - Score each individual account
 - Predict the effects (credit risk, attrition risk, profit/revenue, etc.) of the action/treatment (increase in credit limit)
 - Feed the results as coefficients into the optimization module

- **Other inputs for predicting profits/losses:**
 - Factors that go into calculating the predictions definable by the user including fixed cost per account for calculating profit, interchange fee, interest rate, late fees, annual fees, and over-limit fees
Optimization Problem Formulations

- **Non-linear programming formulations (A)**
 - Accounts for non-linear response to credit line increases
 - Even the simplest formulations are difficult to solve

- **Linear programming formulations (B, C)**
 - Only possible formulation at account level
 - Solutions might be difficult to interpret and deploy
 - Ignores uncertainty in coefficients

- **Robust optimization formulations (D)**
 - Takes uncertainty into account

- **Markov decision processes (E)**
 - Allow multiple credit line increases
Non-Linear Programming Example (A)

\[
\begin{align*}
\text{Max} & \quad \sum_i f(x_i) \\
\text{s.t.} & \quad \sum_i x_i \leq B \\
& \quad \sum_i g(x_i) \leq L \\
& \quad \sum_i f(x_i) \geq (1 + R) \sum_i x_i \\
& \quad x_i \geq 0
\end{align*}
\]

where \(x_i \) are the credit limit increases, \(f(x_i) \) is the profit for a given increase, \(g(x_i) \) is the loss for a given increase, \(B \) is the total credit increase budget, \(L \) is the total allowable losses, and \(R \) is the hurdle rate.

- Credit limit increases are a continuous variable
- Randomly choose a small number of accounts for optimization
- Use Lagrangian relaxation techniques
- Adding more constraints can make the solution more difficult
- Map optimal solution to a decision tree to score all accounts
- Deploying decision tree in lieu of solution can result in significant loss in benefit of the whole effort
Linear Programming Example I (B)

Max $\sum_j \sum_i p_{ji} x_{ji}$

s.t. $\sum_j c_j \sum_i N_i x_{ji} \leq B$

$\sum_j \sum_i l_{ji} x_{ji} \leq L$

$\sum_j \sum_i p_{ji} x_{ji} \geq (1 + R) \left(\sum_j c_j \sum_i N_i x_{ji} \right)$

$\sum_j x_{ji} = 1 \forall i$

$x_{ji} \in \{0,1\}$

where x_{ji} is 1 if account i is given credit line c_j

p_{ji} is the profit for a given increase, and

l_{ji} is the loss a given increase

- Only discrete credit limit increases allowed
- Subset of LP problem has integer solutions most of the time
- Account level optimization possible
- Solve relaxed LP problem and check feasibility for remaining constraints
- No need to map optimal solution to a score
Linear Programming Example II (C)

\[
\begin{align*}
\text{Max} & \quad \sum_{i} \sum_{j} \sum_{x_{ji}} p_{x_{ji}} x_{ji} \\
\text{s.t.} & \quad \sum_{j} c_{j} \sum_{i} N_{i} x_{ji} \leq B \\
& \quad \sum_{i} \sum_{j} \sum_{l_{x_{ji}}} x_{ji} \leq L \\
& \quad \sum_{i} \sum_{j} \sum_{p_{x_{ji}}} x_{ji} \geq (1 + R) \left(\sum_{j} c_{j} \sum_{i} N_{i} x_{ji} \right) \\
& \quad \sum_{j} x_{ji} = 1 \text{ for each } i \\
& \quad 1 \geq x_{ji} \geq 0 \\
\end{align*}
\]

where \(x_{ji} \) are the fraction of accounts in segment \(i \) with credit limit increase \(c_{j} \),

\(p_{x_{ji}} \) is the profit in time period \(t \) for a given increase, and

\(l_{x_{ji}} \) is the loss in time period \(t \) for a given increase

- Only discrete credit limit increases allowed
- Segment level optimization
- Random fraction of accounts in a segment get a particular increase
- No need to map optimal solution to a score
- Predicting profits and losses over multiple time periods difficult
Robust Optimization Example (D)

\[\text{Max} \quad \sum_k \left(\sum_i \sum_j \sum_l P_{kij} x_{ji} \right) / M \]

\[s.t. \quad \sum_j c_j \sum_i N_i x_{ji} \leq B \]
\[\sum_i \sum_j \sum_l l_{kij} x_{ji} \leq L \quad \forall \ k \]
\[\sum_i \sum_j \sum_l P_{kij} x_{ji} \geq (1 + R) \left(\sum_j c_j \sum_i N_i x_{ji} \right) \quad \forall \ k \]
\[\sum_j x_{ji} = 1 \quad \text{for each} \ i \]
\[1 \geq x_{ji} \geq 0 \]

where \(x_{ji} \) are the fraction of accounts in segment \(i \) with credit limit increase \(c_j \),
\(P_{kij} \) is the profit for simulation \(k \) for a given increase, and
\(l_{kij} \) is the loss for simulation \(k \) for a given increase.

- Perform \(M \) simulations to reflect uncertainty in profit and loss coefficients
- Objective function is an expected value
- Loss and hurdle rate constraints might not be satisfied for all scenarios
- Realized profit and loss values more likely to match optimization solution values
Markov Decision Processes Example (E)

\[V_t(c,i) = \left\{ \begin{array}{ll} \max_{c_j} \left\{ r(c + c_j,i) + \beta \sum_{j} p(c + c_j,i;l)V_{t+1}(c + c_j,l) \right\} & \text{if } t = \text{update epoch} \\ r(c,i) + \beta \sum_{j} p(c,i;l)V_{t+1}(c,l) & \text{otherwise} \end{array} \right. \]

\[V_T(c,i) = r(c,i) \]

where the account has credit line \(c \), is in one of the segments \(i \), single period profit is \(r(c,i) \), the transition matrix is \(p(c,i;l) \), the value function is \(V_t(c,i) \), the time horizon is \(T \), and the one-period discount factor is \(\beta \)

- Multiple credit line increases over time horizon \(T \)
- Takes uncertainty into account
- Can still include constraints, e.g., hurdle rate
- Curse of dimensionality, e.g., 20 treatments and 9 segments gives 180 states, 32,400 cell transition matrix
- Markov assumptions might be violated, e.g., new accounts, balance transfers, other treatments
Optimization Formulations Critique

- **(A)** maintains the non-linear nature of response to credit line changes, and continuous change in credit limits.
 - Useful for testing to what extent discretizing the search space in (B-E) results in suboptimal solutions

- **(B)** is the only formulation with possible account level optimization, albeit after ignoring some constraints.
 - Useful for testing to what extent sampling (A) and segment level search (C-E) results in suboptimal solutions

- **(D)** only formulation that take into account the uncertainty in profit as well as loss in response to decisions
 - Useful for testing the impact of uncertainty

- **(E)** only formulation that takes into account multi-period decision making. (C-D) look at multi-period profits and losses, but do not allow multiple credit line changes
 - Useful for testing the value of multiple credit line changes
Optimization Formulations Experience

- Accurate estimation of coefficients crucial
 - Inaccuracies can completely negate the optimization approach
 - Design of experiments to collect additional data extremely useful
 - Using all data sources, including transactional data, extremely useful in building more accurate models

- Accounting for uncertainty crucial
 - Realized profits and losses in production much closer to those predicted by robust optimization as compared to deterministic optimization
 - Also important to take into account correlations between all sources of uncertainty

- Segmentation scheme crucial
 - Impacts accuracy of action-effect models
 - Impacts search space explored

- SAS solution does all of the above
Profit Frontier

![Graphical representation of Profit Frontier]

Copyright © 2003, SAS Institute Inc. All rights reserved.
Impact of Uncertainty on Objective Function

- D.O. generates higher expected total profit.
- D.O. has much wider spread when evaluated w/ various scenarios.
- S.O. generated smaller total profit, but higher profit per account.
- S.O. generates a tighter distribution overall.
- Results from S.O. gets better as the variance in the parameters increases.
Impact of Uncertainty on Constraints

- S.O. is more robust than D.O.
- When simulated with various scenarios based on the covariance structure in the coefficients,
 - D.O. violates the constraints in 51% of the out-of-sample evaluations.
 - S.O. violates the constraints 5.5% of the simulation.
Deployment Options for CLO

- Optimization solution output deployed as a list of account numbers with recommended credit limit changes
 - Does not dilute the optimization results
 - Difficult to use in many situations, e.g., production system constraints, accounts not included in the optimization exercise

- Optimization solution used to create a decision tree. Decision tree deployed to score all accounts and determine credit limit changes in production
 - Mapping solution to decision tree can significantly dilute the results
 - Only option when optimization done for a small sample of accounts, or if accounts were not included in the optimization exercise
 - Easier to compare with traditional approaches, or fit into a champion/challenger methodology
Evaluation for CLO

- Important to close the loop
 - Compare production and modeling results
 - Compare results with older strategies

- Use results for planning
 - Use results to collect new data and fill more gaps
 - Interactions with other treatments, loss forecasting
Q & A

- Thank you for the opportunity to present