Applications of Soft Clustering in Fraud and Credit Risk Modeling

Vijay S. Desai
CSCC X, Edinburgh
August 29, 2007
Need for Segmentation In Risk Modeling

- Can build better models for homogeneous segments

- Accounts exhibit different behavior
 - Transactors use credits cards for convenience and rewards, Revolvers use them for unsecured credit
 - Business travelers use cards differently from infrequent travelers
 - For the same individual, behavior for card-of-choice different from other cards owned by the individual

- Data availability
 - Short history for Young accounts versus Mature accounts
Use of Clustering to Segment Accounts

- Manual segmentation can be replaced by data driven methods like clustering

- Use relevant data to cluster accounts
 - Use transaction volume and revolving balance data to cluster revolvers, transactors
 - Use delinquency information to cluster clean, dirty accounts

- K-means clustering
 - Starts with k randomly selected seeds and assigns data to these clusters using some similarity measure
 - Centroids of the k clusters are computed and data reassigned to clusters based upon some similarity measure
 - Computationally efficient, hence the most popular method in practice
Issues with Segmentation of Accounts

- Behavior is not permanent
 - Situational revolvers
 - Business travelers use cards at home
 - Card-of-choice changes with utilization, incentives

- Data availability
 - Hard segmentation exacerbates data availability problems
 - Especially true for rare events such as fraud

- Censoring creates large gaps in data
 - Issuers don’t offer high credit limits to low credit individuals

- K-means clustering
 - Susceptible to local optima, outliers
 - Only applicable for data with defined means
Ways to Alleviate Some Problems With Clustering

- Use domain expertise to assign initial cluster seeds
- Use multiple starting points to alleviate local optima problems
- Soft clustering: each data point belongs to all clusters in graded degree
 - Cluster membership determined by distance from center.
 - Data-driven: Cluster centers and shape updated intelligently
- Soft-clustering allows same account to be used in multiple models

![Diagram showing cluster membership and fraction of months with revolving balance.](image)
Soft Clustering Methods

- Fuzzy clustering
 - Fuzzy c-means clustering
 - Fuzzy c-means clustering with extragrades

- Possibilistic clustering
 - Possibilistic c-means clustering

- Kernel based clustering
 - Kernel K-means
 - Kernel fuzzy c-means clustering
 - Kernel possibilistic c-means clustering
Fuzzy Clustering

- Similar to k-means clustering
- Extends the notion of membership, data point might belong to more than one cluster
- Examples:
 - Situational revolvers should not be forced into revolvers or transactors
 - Accounts with a single late payment should not be forced into current or delinquent segments
- Bezdek (1981)
Fuzzy c-means Algorithm

Minimize \[J(U, V) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik}^m d_{i,k}^2 \] Eq. (1)

s.t. \[\sum_{i=1}^{c} u_{i,k} = 1, \forall i = 1, ..., n \] Eq. (2)

where

\[0 \leq u_{r,c} \leq 1 \]

\(\mu_{ik} \) is the cluster center of fuzzy group i
\(d_{i,k} = \| x_k - v_i \| \) = the Euclidean distance from cluster center \(v_i \) to data point \(x_k \)
\(m \in (1, \infty) \) is a weighting exponent
Fuzzy c-means Algorithm: Solution

- Picard iterations to update the centroids and membership until \(J(U,V) \) changes are below threshold

Picard Iteration scheme:
Update centroids as

\[
v_i = \frac{\sum_{j=1}^{c} u_{ik}^m x_k}{\sum_{k=1}^{n} u_{ik}^m}
\]

Eq. (3)

Update membership as

\[
u_{ik} = \frac{1}{\sum_{j=1}^{c} \left(\frac{d_{ik}}{d_{ik}^m} \right)^{2/(m-1)}}
\]

Eq. (4)
Fuzzy c-means clustering with Extragrades

- McBratney and De Gruijter (1992)
- Alleviates the influence of outliers by adding a penalty term to the objective function
- Potential outliers are put in “extragrades” classes \(u_{k*}^m \)
- Solution involves Picard iterations updating the centroids and membership matrices

Minimize \(J(U, V) = \alpha \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik}^m d_{i,k}^2 + (1 - \alpha) \sum_{k=1}^{n} u_{k*}^m \sum_{i=1}^{c} d_{i,k}^{-2} \)
Possibilistic Clustering

- Relaxes the probabilistic constraint on membership (Eq. (2))
- Allows an observation to have low membership in all clusters, e.g., outliers
- Allows an observation to have high membership in multiple clusters, e.g., overlapping clusters

Minimize \(J(U, V) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik}^m d_{i,k}^2 + \sum_{i=1}^{c} \eta_i \sum_{k=1}^{n} (1 - u_{i,k})^m \) (1993)

Minimize \(J(U, V) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik} d_{i,k}^2 + \sum_{i=1}^{c} \eta_i \sum_{k=1}^{n} (u_{i,k} \ln(u_{i,k}) - u_{i,k}) \) (1996)
Kernel Basics

- Kernel definition $K(x,y)$
 - A similarity measure
 - Implicit mapping ϕ, from input space to feature space
 - Condition: $K(x,y) = \phi(x) \cdot \phi(y)$

- Theorem: $K(x,y)$ is a valid kernel if K is positive definite and symmetric (Mercer Kernel)
 - A function is P.D. if $\int K(x,y) f(x) f(y) dx dy \geq 0 \quad \forall f \in L_2$
 - In other words, the Gram matrix K (whose elements are $K(x_i,x_j)$) must be positive definite for all x_i, x_j of the input space

- Kernel Examples:
 - $K(x, y) = \langle x, y \rangle^d$
 - $K(x, y) = e^{-\|x-y\|^2/2\sigma}$
Kernel Based Clustering

- Kernel based clustering increases the separability of the input data by mapping them to a new high dimensional space.

- Kernel functions allows the exploration of data patterns in new space, in contrast to K-means with Euclidean distance which expects the data to distribute into elliptical regions.

Minimize \(J^\phi (U, V) = \sum_{k=1}^{n} \sum_{i=1}^{c} u_{ik}^m \left\| \Phi(x_k) - \Phi(v_i) \right\|^2 \)
Iris Data Set Description

- 4 variables, 3 classes, 50 observations per class
- Class 1 easily separable, Class 2-3 overlapping
Iris Data Set: K-Means Clustering Results

- Classes 1 and 2 identified
- Class 3 (Virginica) misclassified

<table>
<thead>
<tr>
<th>CLUSTER (Cluster)</th>
<th>Species</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setosa</td>
<td>50</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Versicolor</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Virginica</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50</td>
<td>33.33</td>
</tr>
<tr>
<td>1</td>
<td>Setosa</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>Versicolor</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Virginica</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>Setosa</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Versicolor</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Virginica</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>Setosa</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Versicolor</td>
<td>50.00</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Virginica</td>
<td>17.00</td>
<td>11.33</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>50.00</td>
<td>33.33</td>
</tr>
<tr>
<td>Total</td>
<td>Setosa</td>
<td>50.00</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Versicolor</td>
<td>50.00</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Virginica</td>
<td>50.00</td>
<td>33.33</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>150.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Iris Data: Soft Clustering Results

Fuzzy Clustering

Possibilistic Clustering (1993)

Possibilistic Clustering (1996)

Possibilistic Clustering (1996)
Suggestions on When to Use Each Method

- Very large data sets with many clusters
 - K-means clustering

- Data sets with thin shells, overlapping clusters
 - Fuzzy K-means
 - e.g., current, delinquent, dirty accounts

- Data sets with outliers
 - Fuzzy K-means with extragrades

- Data sets with overlapping clusters, noisy data, other clustering results not consistent with intuitive concepts of compatibility
 - Possibilistic clustering
 - e.g., revolvers, transactors, situational revolvers

- Data sets with non-spherical density distributions, e.g., donuts, spirals
 - Kernel based clustering in feature space
 - e.g., censored data
Using the Soft Clustering Results

- **Model building phase**
 - Build model for each cluster
 - Use all accounts that have a significant cluster membership probability
 - Model building data weighs each account in proportion to its membership probability

- **Scoring phase**
 - Score each account using all models from segments for which account had a significant membership probability
 - The final output score for the account is a weighted average of all the segment based scores

- Resulting scores are more stable, particularly for accounts with changing behavior

- Results more robust for clusters that would have few accounts under traditional approaches
Q & A

- Thank you for the opportunity to present